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ABSTRACT

Support vector machines are classification algorithms based on quadratic programming that have been found to give excellent
classification results on problems such as discriminating targets versus backgrounds. A key capability of these algorithms is
that they need not require a preprocessing step to find feature vectors, yet preprocessing is still typically used. Preprocessing
is still an important step in the classification process. We discuss what type of preprocessing steps are useful in improving
the classifications results of support vector machines. We first give a short introduction to support vector machines. Then
the algorithm is applied to the MSTAR radar data set. Several methods to preprocess the data are used before being sent to
the support vector machine. The effect on the classification rate of the algorithm is then determined.

INTRODUCTION

The problem that is studied in this paper is radar image classification, and what types of preprocessing are useful before
classification with a support vector machine begins. The support vector machine algorithm can take as input the entire digital
image and classify it according to some criterion. As discussed in earlier papers, a pre-processing step is not necessarily
necessary for feature extraction, but sometimes it can greatly improve the performance of the decision algorithm. Pre-
processing is used to remove redundant information or to transform the image to a space where the objects are more easily
classified.

Preprocessing or feature extraction can be performed using wavelets, peaks in the Fourier spectrum, filtering, preprocessing
with conditioning matrices, statistical measures, histograms, etc. The number of methods that have been used is much longer
than this. The question raised in this paper is, which pre-processing steps are actually useful. We consider the differences
between linear and non-linear transforms of the feature vectors before classification begins. We find linear methods typically
do not improve the classification performance. This includes all matrix operations and filtering operations on the training
and test data set. We prove that linear operations cannot make non-separable data separable. On the other hand, non-linear
methods can make large differences in the classification results, and can turn non-separable features vectors into separable
ones.

The paper begins by providing a brief tutorial on Support Vector Machines (SVM's) and outlines derivations of some of the
important elements. If already familiar with SVM's, the reader can skip directly to the section entitled Linear Preprocessing,
which follows the SVM introduction. After the section on linear preprocessing, a short section on non-linear preprocessing
follows. Then the SVM algorithm is applied to a publicly available Synthetic Aperture Radar (SAR) data set from the
MSTAR program.

SUPPORT VECTOR MACHINES

Linearly separable data

The SVM algorithm3 5 is based on finding the pair of parallel hyperplanes that separates the data into two classes
while having the largest perpendicular distance between them. We conjecture that this will provide a good approximation to
the "best" separating hyperplane, where by "best" we mean the hyperplane that will give, on average, the lowest
classification error when new data is used.
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To introduce the SVM's we first consider a linearly separable problem; i.e. the data can be separated completely by a

hyperplane. Each data point is described by a feature vector, i , and a truth value, y, that can take the values of+1 or -1,
depending on the class. The two hyperplanes are required to pass through at least one point of each class and there can be no
points between them. The boundary between the classes is then defined to be a third parallel hyperplane that is halfway

between these two. The data points that the outer hyperplanes pass through, are called the support vectors, the meaning of
which will be explained later. One of the hyperplanes consists of those points x which satisfy,

w i..+ b= +1, (la)

while the other hyperplane contains those points which obey,

i,..•'+ b= -1, (1b)

with Eq. (Ia) going through at least one point of class y=+l and Eq. (lb) going through at least one point ofclassy=-l. The
constants i7, and b define the hyperplanes, where iv is a vector that is normal to the hyperplanes and -b/Il 711i is the
perpendicular distance from the origin to the middle hyperplane. The RHS of Eq. (Ia) will be greater than or equal to +1 for
all points of class y=+l and the RHS of Eq. (1b) will be less than or equal to -I for all points of class y=-I. These can be
combined into the following constraint on all the data points,

y(('i- .ij + b) - 1I 0 (1 < i< n). (2)

The perpendicular distance between the two outer hyperplanes is equal to 2/I 1i'll. Therefore, finding the hyperplanes with
the largest margin reduces to computing values for if, and b that minimize II 112 , subject to the constraint in Eq. (2).

A standard procedure for handling optimization problems with constraints is given by the Lagrangian formalism'-. The
constraints are taken into account by adding multiples of the constraint equations to the objective function, which in this case,
results in the following primal Lagrangian3 5,

L 11 ii,11 ii7. i + b) + a,(3)
2

where a, are the Lagrange multipliers associated with each of the constraints in Eq. (2). Because the constraints are
inequalities, bounded from below, the Lagrange multipliers are required to be non-negative. 7-9

Setting the derivative of the Lagrangian in Eq. (3) with respect to if, and b (the primal variables) equal to zero, leads to the
following expressions,

w7= a°y,, (4a)

ajO~yi = 0 . (4b)

Inserting Eqs. (4a) and (4b) into (3), results in the dual Lagrangian,

LD = a I -i -YI (5)

The problem is now reduced to finding the Lagrange multipliers (the dual variables) that maximize Eq. (5) and satisfy both
the non-negativity constraints and the constraints of Eq. (4b). From the theory of constrained optimization ones finds that the
only constraints that matter are those that actually constrain the minimization of the objective function. The other (inactive)
constraints can be discarded without changing the optimal point. It is consistent therefore to set the Lagrange multipliers for
the inactive constraints to zerog8 9. This condition can be summarized as:



ajy~_-ý + )-1÷ 0, (6)

which means that those data points with non-zero Lagrange multipliers (and hence are active constraints) will lie on the outer
hyperplanes. These data points are called the support vectors and they are the points that determine the position of the
hyperplanes. One can move the other points around the feature space or remove them entirely and the solution will not
change, provided one does not move a point across one of the outer hyperplanes.

One can solve Eq. (5) using any quadratic programming solver, although different solvers perform better on different types of
problems 5 '7"9. Solving the quadratic programming (QP) problem efficiently is actually one of the most difficult parts of SVM
and there exists many numerical QP solvers that are readily available.

Once the Lagrange multipliers are known, the solution for iv- is given by Eq. (4a), where the sum can be restricted to the
support vectors, since they are the only ones with non-zero a. One can find b from Eq. (6) using any of the support vectors,
although one generally averages over all the support vectors for better accuracy. Once these constants are known, the
classification of an unknown vector, P, is given by the sign of,

b+y•a•yjýci.;, (1 < i< n,), (7)

where the sum is over the support vectors.

Nonlinearly separable data

Now suppose that the "best" boundary between the data is nonlinear. An example of this situation is shown in Fig. 1, using a
non-homogeneous quadratic kernel. One cannot separate the two classes with a straight line. The structure of the SVM
equations allows a simple solution to this situation. Map the data, through a nonlinear transformation 0 to a different space
where the data can be separated with a hyperplane. This results in the Lagrangian in Eq. (5) being transformed to3 "5 ,
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Since Eq. (8) depends only on scalar products between the transformed feature vectors, one can replace the scalar product
with a kernel function,

K(iJ) = (-) • O.), (9)

and never need to compute the transformation 0 explicitly. Equation (7) then becomes,

b+X"•y1K(i-. i) (1<__ns,), (10)

with the test feature vector now inside the summation over the support vectors.

K (.i , ) =( . + 1)2. (1 l

Non-separable data

A typical problem in applications is that the data is not separable using a given kernel. Sometimes, no moderately smooth
kernel can separate the data. Then the assumptions leading to Eq. (1) no longer hold. Although the preceding SVM algorithm
can provide a reasonable solution in these cases, many times the separating hyperplane is not one that would be considered
the "best" solution. This is due to the outliers being given more weight than the other data points. To avoid this, positive



slack variables 8 are introduced that measure the deviation

of the outliers from the optimal separating hyperplanes.
The constraint equation (2) then becomes, 3-5

y i(ii..ri +b)-l+8i>0. (12) *

A convenient way to minimize the total amount of the

outlier error is to add an appropriate term to the *

Lagrangian, which is multiplied by a weighting factor C. x

Choosing the error term to be the sum of the deviations
leads to the optimization solution being independent of the

slack variables and their associated Lagrange multipliers. x

The only effect of this additional term is to restrict the
original Lagrange multipliers to, 0 < a. < C, instead of
being simply non-negative. Lower values for C
correspond to smaller penalties for outliers and a softer Figure 1: Non-linear separable data

margin. The threshold b can still be found from Eq. (6),
provided the corresponding Lagrange multiplier is not at the upper bound C.

LINEAR PREPROCESSING

We start the discussion of preprocessing by considering linear preprocessing operations on non-linearly separable data.

Linear operations are essentially any matrix operation of the feature vectors before the SVM operation,

A" = 12, (13)

where R is a matrix acting on the feature vectors that lie on each row of the feature vector matrix X, with i, in each row. The

matrix R can be a filtering matrix, or any other operation that is linear. For example, take a totally random matrix R and

apply it to the feature vectors in Figure 1. The entries of the matrix R are taken as Gaussian random variables. Since X is a

16x2 matrix, R is a 2x2 matrix. There are only two columns because we are looking at an example of feature vectors in two

dimensions. Since a random 2x2 matrix R will rarely have a zero eigenvalue, it is invertible. The key question is, what is the

effect on the SVM of using the preprocessed feature vectors A" given by Eq. (13)? The answer can partially be found using
linear algebra. In one realization of a random matrix R,

17==.4387 .2140 (14)

.4983 .6435'

the resulting SVM classification using the modified feature
vectors of Figure 1 are displayed in Figure 2. The
classification of the feature vectors is again perfect. The
classes are correctly identified, the number of support vectors * *

are the same and the feature vectors are still non-linearly x

separable. Is this true in general? That is, for any feature
vector matrix X and any matrix R? The answer is almost, yes.
The answer is found by considering what the action of any
matrix on any other matrix is, and by using the singular value
decomposition. The singular value decomposition theorem

states any matrix can be broken into two orthogonal matrices, X

and a diagonal matrix of singular values in the middle,

R = USJ'. (15) Figure 2: Feature Vectors that have been pre-processed

with a linear operator are still non-linearly separable.This means the action of any matrix R is to rotate the feature



vectors X, using U. Then to stretch the basis or axes by a factor given by the singular values S, and finally to again rotate

what is left by V. The result can be seen in Figure 2 for the matrix R given in Eq. (14). Generally, linear preprocessing will

not help improve the classification algorithm. For example, we could not expect a matrix R to turn the problem in Figure 1

into a linearly separable one, since R only rotates and stretches the axes. It is not possible to find a matrix R to turn a linearly

non-separable problem into a linearly separable one. Of course using a singular matrix R, we could turn a linearly separable

one into a non-separable one, but this would degrade the performance of the SVM.

Earlier we mentioned the answer would only be partially found. We concluded that a linear operation R on the feature

vectors X would not improve the classification rate, largely because it does not change the problem theoretically. But the

matrix R can change the numerical aspects of the problem. In solving the SVM problem, the Hessian matrix often has a large

condition number, so the matrix must be regularized. Numerically, the number of support vectors can change when the

matrix X is preprocessed with a matrix R. This is most clearly seen when the eigenvalues or singular values of R have a great

disparity in magnitude. This means in the two dimensional case, one axis is squished, and the other is greatly expanded,
pushing all the feature vectors into a line, very close together. Then regularizing, and other numerical issues change the

solution. Unfortunately, this generally worsens the solution unless it is known that the feature vectors are squished into a

subspace. If that subspace can be found, expanding along that direction may help the numerical aspects of the solution.

These ideas will be left for a latter experiment. It may be found that if a linear operator improves the classification rate, it is

in fact just improving the numerical performance of SVM, and not increasing the information contained in the feature
vectors.

NON-LINEAR PREPROCESSING

Most preprocessing steps fall into the non-linear category including wavelets and multiresolution analysis because those

algorithms subsample the data. Other non-linear methods are various statistical measures, histograms, the median filter and

morphological operations. Of course these methods can all have a large impact on the classification rate, and greatly change

the amount of information in the feature vectors. As an example, consider Figure 3. The feature vectors from Figure I are

transformed by a spreading function near the center of the one class with most of its points on the right. This function is

performed by adding an exponential with a sign factor in front so that points near the off-center thus pushing them further

away than points farther from the center of the one class. It is generally difficult to find the right preprocessing type, but it is
certainly possible to find a preprocessing step that creates linearly separable data from non-linearly separable data. An
automatic method of determining the non-linear preprocessing step is a future research direction.

MSTAR RADAR DATA RESULTS

We start by training on a subset of the MSTAR data set, and assuming there are only two classes, T72s and non-T72 radar
signatures, the BMP. By using azimuth index data, we only
use radar signatures between 0 and 15 degrees. This means
typically between 6 and 9 images per vehicle. A total of 47
full sized radar images were used to train the data, and another
46 different images to test the data. " *

In each case, 22 images were BMP. In the training set there
were 25 T72 images, and there were 24 in the test set at those
angles. The test set does not use the same BMP and T72
vehicles. The radar images are normalized and the mean is x
taken out, as was done in recent papers by Karlsen3'16. - x

Training and testing was done with a degree 2 polynomial.
The training set was completely classified correctly. The
testing data set was classified correctly 67.42% of the time,
68.18% classification of the BMPs and 66.67% classification
of the T72s. The goal was not to reach a high classification
rate, but to determine the effects of linear and non-linear Figure 3: Feature Vectors that have been pre-processed

operators used for preprocessing. So far, no real with a non-linear stretching operator and are nearly
preprocessing was done on the images. The raw images are linearly separable.
being used by the classifier (other than normalization). What
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happens to the classification rate as random Gaussian matrices (invertible) are applied to the data? This was done ten times
to the training and testing feature vectors, and classification rates were re-evaluated. For training, the feature matrix X was

47x1024 (each row is a radar image), so operating on columns means we take R to be 1024x1024. After using a symmetric
random matrix R on both training and testing over 10 simulations. The training data set was again always correctly
classified. On the testing data set, the average classification rate was 61% with a standard deviation of 2.5%. The mean
classification rate of BMPs was 77.26% and the T72, 44.16% with standard deviations of 5.5% and 4.7%. This means that
the matrix R is effecting the classification rate, but not by a great deal as expected. A non-linear preprocessing step can of
course greatly change the classification results.

CONCLUSIONS

In this paper, we introduced the notion of support vector machines, and as an example, classified a subset of the MSTAR
data base. Support vector machines typically use a pre-processing step on the feature vectors before classification begins, but
do not need to do this. SVMs can directly train and test on the radar images themselves. We considered the consequences of
preprocessing on the classification rate of SVMs. We determine that linear operations have little effect of the classification
result theoretically, but numerically can make a difference. Of course, non-linear operations can make a big difference on
classification rates. We test our results on a small subset of the MSTAR database and find classification rates to change by
only a standard deviation of 2.5%.
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